Platter Systems: Difference between revisions

no edit summary
No edit summary
Line 5: Line 5:
==History and Use==
==History and Use==


Platters came about in the late 1970s with the introduction of [[Xenon short-arc lamp|xenon lamps]], the subsequent rise of the [[multiplex]] (cinemas with multiple screens) and the movement towards increased [[automation]]. Platter systems and other single-reel film transport systems such as towers and double make-up tables (MUTs) largely replaced reel-to-reel projection as the most common means of [[35mm]] projection because it enabled the screening of multiple films on multiple screens simultaneously with fewer operators. Some theaters that retained reel-to-reel capabilities frequently employed large-reel [[changeover]] systems, in which a feature was built up onto 6,000’ reels and a cue detection system was used to automate the changeover. Some large-reel changeover systems employed projectors that could rewind the reel through the projector mechanism after playback (so-called “rock-and-roll” projectors), providing a level of [[automation]] on par with a platter system.
Platter systems rose to popularity in the late 1970s as part of the movement towards increased [[automation]]. Along with the transition from [[carbon arc]] to [[xenon short-arc lamp|xenon lamps]] and the development of [[automation system|automation control systems]], platter systems facilitated the rise of the [[multiplex]] (a movie theater with several screens). Platter systems and other single-reel film transport systems such as towers and double make-up tables (MUTs) largely replaced reel-to-reel projection as the most common means of [[35mm]] projection because it enabled the simultaneous screening of multiple films on multiple screens with fewer operators. Benefits of the platter system included reduced labor costs—multiple films could be run simultaneously by a single projectionist or theater manager—and reduced print wear over the course of a long run. After the reels have been plattered the projectionist only handles the clear leader spliced to the head and the tail of the last reel, and the print does not have to be rewound between each screening.
 
The same incentives also led most of the theaters that continued to use reel-to-reel projection for first-run exhibition  to employ large-reel [[changeover]] systems, in which a feature was built up onto 6,000’ reels and a cue detection system was used to automate the changeover. Some large-reel changeover systems employed projectors that could rewind the reel through the projector mechanism after playback (so-called “rock-and-roll” projectors), providing a level of automation on par with a platter system.


==Archival Implications==
==Archival Implications==
From 2010 onward the standard for exhibition began to move from 35mm prints and film projection to Digital Cinema Packages (DCPs) and digital projection. Although some theaters maintained the ability to screen film or have even added film projectors after digital became the industry standard, (see:[[List of analog film exhibitors]]) the need for platter systems and [[automation]] was greatly decreased because the frequency of screenings on film was greatly decreased. Platter systems were designed to facilitate a theater's ability to screen prints multiple times a day, seven days a week, on multiple screens. When properly maintained and operated by a trained and attentive projectionist, platter systems can be a suitable method of projecting first-run films, however most first-run films are now screened digitally. Venues who continue to screen film tend to do so with a frequency that is more compatible with reel-to-reel changeover projection systems.     
When properly maintained and operated by a skilled projectionist, platter systems can be a suitable method of projecting first-run films. However, from the 2010s onward the standard for exhibition began to move from 35mm prints and film projection to Digital Cinema Packages (DCPs) and digital projection. Although some theaters maintained the ability to screen film or have even added film projectors after digital became the industry standard (see:[[List of analog film exhibitors]]), the need for platter systems and automation greatly decreased because the frequency of screenings on film declined precipitously. Platter systems were designed to facilitate a theater's ability to screen prints multiple times a day, seven days a week, on multiple screens. Since the transition to DCP as the primary means of film distribution, platter systems have become obsolete (and unnecessary) in most situations Venues that continue to project film tend to do so with a frequency that is more compatible with reel-to-reel changeover projection systems.     


In addition, plattering or otherwise building up prints for large-reel playback is not considered acceptable for archival film prints. Film archives and the repertory divisions of many studios and distributors now strictly forbid plattering or building up 35mm prints onto [[reels]] larger than 2,000 feet. If a theater wishes to borrow prints from these sources they can only do so if they have a changeover system.  
Plattering introduces certain inherent risks to the condition of a film print, but many of the problems associated with plattering relate to poor practices, negligence, and more broadly the prioritization of business interests over good film handling practices and the deprofessionalization of projection as a trade.


Plattering introduces certain inherent risks to the condition of a film print, but many of the problems associated with plattering relate to poor practices, negligence, and more broadly the prioritization of business interests over good film handling practices and the deprofessionalization of projection as a trade.
In addition, plattering or otherwise building up prints for large-reel playback is not considered acceptable for archival film prints. Film archives and the repertory divisions of many studios and distributors now strictly forbid plattering or building 35mm prints up to [[reels]] larger than 2,000 feet. If a theater wishes to borrow prints from these sources they can only do so if they have a changeover system. 
 
While platter systems are often singled out as uniquely problematic by lending institutions, there are also a number of equipment-related concerns related to reel-to-reel projection which are not as stigmatized as platter systems but are just as problematic. For example, some changeover houses still use outdated single-speed motorized rewinds that cinch the film on every rewind, and some legacy installations use overpowered lamps without adequate cooling, resulting in heat damage to every print they run.


==Damage Associated with Plattering==
==Damage Associated with Plattering==
===Intentional Film Damage===
===Intentional Film Damage===
Of all of the damage associated with plattering and large-reel projection, the worst is that which is intentionally inflicted.  
Much of the damage associated with plattering and large-reel projection is intentionally inflicted by projectionists as part of their regular workflow.


Most intentional damage is related to the marking of reel changes. The most common method of marking reel changes was to apply shoe polish or white paint pen to the film edge in the vicinity of the reel change so that it would be easily visible during breakdown. This results in print contamination, dirt buildup in the projector, and when poorly applied can cover the soundtrack and even run into the picture area. A less destructive method of marking reel changes employed yellow adhesive roll tape, which was folded over the film edge. When poorly applied, this tape could run past the film edge or cover a portion of the perforations and the [[Dolby Digital]] soundtrack.
Most intentional damage is related to the marking of reel changes. The most common method of marking reel changes was to apply shoe polish or white paint pen to the film edge in the vicinity of the reel change so that it would be easily visible during breakdown. This results in print contamination, dirt buildup in the projector, and when poorly applied can cover the soundtrack and even run into the picture area. A less destructive method of marking reel changes employed yellow adhesive roll tape, which was folded over the film edge. When poorly applied, this tape could run past the film edge or cover a portion of the perforations and the [[Dolby Digital]] soundtrack.
Line 34: Line 38:
</gallery>
</gallery>
===Makeup and Breakdown===
===Makeup and Breakdown===
Most of the damage to plattered prints occurs when individual reels are built up to the platter or when the print is broken back down to shipping reels.
Much of the damage to plattered prints occurs when individual reels are built up to the platter or when the print is broken back down to shipping reels.


One problem that is always present when plattering or building up to large reels is the need to cut the [[leader|head and tail]] off of each reel in order to join the reels together. To prevent the reel order from being mixed up when the print is broken down, the first and last frame of picture were left on the head and tail respectively. This identifying frame (sometimes called a match frame) was then matched to the reel upon breakdown. If done properly, this results in a single splice (probably concealed by the changeover when run reel-to-reel) and no footage loss. In practice, however, it was common for projectionists to tear the tape splices between the reels by hand instead of peeling off the tape, causing damage to the frames. It was also common practice for each subsequent venue to simply make a fresh cut instead of reusing the existing head or tail splice. This resulted in cumulative footage loss, and often in a series of poorly made splices immediately adjacent to one another at the end of the reel. Heads and tails were often rejoined to the reel using masking tape instead of being properly spliced.
One problem that is always present when plattering or building up to large reels is the need to cut the [[leader|head and tail]] off of each reel in order to join the reels together. To prevent the reel order from being mixed up when the print is broken down, the first and last frame of picture were left on the head and tail respectively. This identifying frame (sometimes called a match frame) was then matched to the reel upon breakdown. If done properly, this results in a single splice (probably concealed by the changeover when run reel-to-reel) and no footage loss. In practice, however, it was common for projectionists to tear the tape splices between the reels by hand instead of peeling off the tape, causing damage to the frames. It was also common practice for each subsequent venue to simply make a fresh cut instead of reusing the existing head or tail splice. This resulted in cumulative footage loss, and often in a series of poorly made splices immediately adjacent to one another at the end of the reel. Heads and tails were often rejoined to the reel using masking tape instead of being properly spliced.
Line 67: Line 71:
Despite the numerous problems associated with platter systems, they compare favorably to reel-to-reel systems in some regards.
Despite the numerous problems associated with platter systems, they compare favorably to reel-to-reel systems in some regards.


Most importantly, a platter system provides perfectly even feed and takeup tension. In this regard they are superior to the feed and takeup frictions on purely mechanical reel-to-reel projectors, which are often the source of major print damage. This does not apply to reel-to-reel projectors with auto-calibrating frictions such as the Kinoton E series.
Most importantly, a platter system provides perfectly even feed and takeup tension because the platter rotation speed changes during playback. In this regard they are superior to the feed and takeup frictions on purely mechanical reel-to-reel projectors, which are often the source of major print damage. While platters do require maintenance to ensure proper feed and takeup (ex., platter motor timing must be calibrated), under typical operating conditions reel-to-reel systems require more regular maintenance and and calibration to prevent print damage. One inherent problem with purely mechanical reel-to-reel projectors is that the feed and takeup tension must be fixed, despite the fact that the optimal tension fluctuates as the reel diameter changes over the course of playback (a reel with less film on it requires less holdback tension than a reel with more film on it). Tension must also be adjusted between reels of different capacities and hub sizes, and when running film of different gauges on a dual format projector. The clutch components also wear over time, requiring recalibration. This does not apply to reel-to-reel projectors with auto-calibrating frictions such as the Kinoton E series.


For long runs, platter systems also reduce the overall handling of the film. If the projectionist wears gloves and takes care to avoid surface contact and print contamination when building up and breaking down the print, many problems typically associated with plattering may be avoided. Platter covers can also be used to protect the print from dust when not in use.
For long runs, platter systems also reduce the overall handling of the film. If the projectionist wears gloves and takes care to avoid surface contact and print contamination when building up and breaking down the print, many problems typically associated with plattering may be avoided. Platter covers can also be used to protect the print from dust when not in use.


For these reasons, platter systems remain an acceptable transport method for newly struck [[70mm]] prints. With the revival of 70mm as a prestige format in the 2010s, a new print assembly workflow was developed for platter houses. For the 70mm releases of ''Hateful Eight'' and ''Dunkirk'', the onus of cleanly assembling the prints was taken off of the individual projectionist. Instead, Boston Light & Sound created a “platter farm” where the 1,000’ reels were preassembled using ultrasonic splicers and shipped on modular platter reels to each venue.<sup>[1][2]</sup>
For these reasons, platter systems remain an acceptable transport method for newly struck [[70mm]] prints. With the revival of 70mm as a prestige format in the 2010s, a new print assembly workflow was developed for platter houses. For the 70mm releases of ''Hateful Eight'' and ''Dunkirk'', the onus of cleanly assembling the prints was taken off of the individual projectionist. Instead, Boston Light & Sound created a “platter farm” where the 1,000’ reels were preassembled using ultrasonic splicers and shipped on modular platter reels to each venue.<sup>[1][2]</sup>
There are also quite a number of issues associated with reel-to-reel projection which are not as stigmatized as platter systems but are just as problematic. For example, some changeover houses still use outdated single-speed motorized rewinds that cinch the film on every rewind, and some legacy installations use overpowered lamps without adequate cooling, resulting in heat damage to every print they run.


==References==
==References==
470

edits